

МОДЕЛИРОВАНИЕ ДЕТОНАЦИОННЫХ НЕУСТОЙЧИВОСТЕЙ В ВОДОРОД-ВОЗДУШНЫХ СМЕСЯХ

Беляев П.Е., Макеева И.Р., Мастюк Д.А., Пигасов Е.Е., Куприянец Т.А.

Содержание

1. Введение Краткий обзор контекста

2. Модель сплошной среды

Моделирование транспортных и газодинамических процессов

3. Результаты расчётов

Представление результатов тестовых расчётов

4. Заключение

Введение

1

Введение и мотивация

- В производственном процессе водород-содержащих веществ задействованы большие объёмы различных горючих газов, в том числе водорода.
- Частота аварии на НПЗ 10⁻¹ год.
- За 10 лет в России 65 пожаров, 46 «взрывов», 15 выбросов [1].
- Размеры детонационной ячейки ключевая характеристика детонационной способности смеси.
- Экспериментальное исследование детонационной способности ограничено масштабами экспериментальных установок [2].

Краснов А.В. Статистика чрезвычайных происшествий на объектах нефтеперерабатывающей и нефтехимической промышленности за 2007-2016 гг. «Нефтегазовое дело» 2016 - № 6.

Tieszen S.R., et al. Gaseous hydrocarbonair detonations // Combustion and Flame. – 1991. – V. 84(3). – P. 376-390

Моделирование детонационных неустойчивостей

- Загромождённость и наличие газовзвесей в области горения могут привести к ускорению [1,2]
- Численное исследование характеристик неустойчивостей детонационного фронта может снять ограничения натурного эксперимента.
- Характеристики моделируемых неустойчивостей детонационного фронта существенно зависят от выбора кинетического механизма [3].

Шлирен-съёмка фронта детонационной волны и примеры следов на покрытой сажей пластине [4]

- 1. Wagner H. Gg. Flammenbeschleuning zentrales problem bei der Entschehung von explosionen // PTB-Mitteilungen. 1981. V. 91, № 4. P. 24
- 2. Sherman M.P., Tieszen S.R., Benedick W.D., Fisle J.W. The effect of traverse venting of flame acceleration and transition to detonation in a large channel // Progress in Astronautics and Aeronautics. Dynamics of explosions. AIAA Inc., N.-Y. 1986. V. 106. P. 66
- 3. Борисов С.П., и др., Сравнение детальных кинетических моделей детонации // Физика горения и взрыва. 2021 Т. 57, № 3. С. 18-34
- 4. Austin M. PhD Thesis: The Role of Instability in Gaseous Detonation

Методология моделирования химически реагирующей сплошной среды

Система уравнений законов сохранения

Уравнение непрерывности:

$$\frac{\partial}{\partial t} \int_{V} \rho Y_{i} dV = - \oint_{\partial V} \rho Y_{i} \vec{U} d\vec{f} + \oint_{\partial V} \vec{J}_{i} d\vec{f} + \int_{V} S_{Y_{i}} dV$$

Уравнение сохранения импульса:

$$\frac{\partial}{\partial t} \int_{V} \rho \vec{U} dV = -\oint_{\partial V} \left(\rho \vec{U} \vec{U} - K \right) d\vec{f} + \int_{V} \left[\rho \vec{g} + \begin{pmatrix} 0 \\ P \end{pmatrix} \right] dV + \int_{V} \vec{S}_{J} dV$$

Уравнение сохранения энергии:

$$\frac{\partial}{\partial t} \int_{V} \rho \varepsilon dV = -\oint_{\partial V} \rho \vec{U} \varepsilon d\vec{f} + \oint_{\partial V} K \vec{U} d\vec{f} + \oint_{\partial V} \vec{J}_{q} d\vec{f} + \int_{V} \rho \left(\vec{g} \cdot \vec{U} \right) dV + \int_{V} S_{\varepsilon} dV$$

Вязкий тензор напряжений:

$$K = \begin{pmatrix} -P + 2\eta \frac{\partial U_z}{\partial z} - \left(\eta_b - \frac{2}{3}\eta\right) div\vec{U} & \frac{1}{2} \left(\frac{\partial U_r}{\partial z} + \frac{\partial U_z}{\partial r}\right) \\ \frac{1}{2} \left(\frac{\partial U_r}{\partial z} + \frac{\partial U_z}{\partial r}\right) & -P + 2\eta \frac{\partial U_r}{\partial r} - \left(\eta_b - \frac{2}{3}\eta\right) \cdot div\vec{U} \end{pmatrix}$$

 ρ – плотность,

r, z - координатные компоненты вектора скорости U, вдоль радиуса и оси симметрии соответственно,

 \vec{U} - вектор скорости,

Р – давление,

Е – внутренняя энергия,

S_{Yi}- источник массы і-го компонента смеси,

S_J – источник импульса,

- S_{E} источник энергии, V – объём, δ_{lm} - символ Кронекера,
- $dec{f}$ ориентированная площадь,
- $\eta-$ коэффициент кинематической вязкости,
- J_q- поток энергии за счёт теплопроводности,
- ε полная энергия единицы массы.

Плотность диффузионного и теплового потоков

$\vec{J}_i = -D_{im} \overrightarrow{V_i} \quad \vec{J}_q = \lambda_{\rm cm} \nabla T$

 $P = P(\rho, E)$

Коэффициент диффузии относительно смеси [1]

Коэффициент теплопроводности смеси рассчитывается по формуле Варнатца [2]

$$\lambda_{\rm CM} = \sum_{i=1}^{N} \frac{\lambda_i}{1 + 1.065 \sum_{k=1, k \neq i}^{N} \frac{x_k}{x_i} \phi_{ik}} \quad \text{где } \phi_{ik} = \frac{1}{\sqrt{8}} \left(1 + \frac{M_i}{M_k} \right)^{-\frac{1}{2}} \left[1 + \sqrt{\frac{\eta_i}{\eta_k}} \sqrt{\frac{M_k}{M_i}} \right]$$

i,j – индекс компонента смеси,

 Y_i –массовая доля $i\mathchar`-го компонента смеси,$

S_{Yi} – источник массовой доли *i*-го компонента смеси,

 ρ – плотность,

1. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley and Sons, New York, 1960.

2. Горение. Физические и химические аспекты, моделирование, эксперименты, образование загрязняющих веществ : пер. с англ. / Ю. Варнатц, У. Маас, Р. Диббл. - М. : Физматлит, 2003. - 352 с.

Моделирование многокомпонентной среды

Уравнение состояния

N – количество компонент смеси

 \vec{J}_i – плотность диффузионного потока *i*-го компонента смеси,

Вычисление базовых коэффициентов

переноса

Бинарный коэффициент диффузии

$$D_{12} = \frac{3}{16} \frac{\sqrt{2\pi k^3 \frac{T^3}{m_{12}}}}{p\pi \sigma_{12}^2 \Omega_{12}^{(1,1)*}}$$

Коэффициент вязкости

$$\eta_1 = \frac{5}{16} \frac{\sqrt{\pi kmT}}{\pi \sigma^2 \Omega^{(2,2)*}}$$

Коэффициент теплопроводности в чистом одноатомном газе

$$\lambda_1 = \frac{25}{32} \frac{\sqrt{\pi kmT}}{\pi \sigma^2 \Omega^{(2,2)*}} C_v$$

i,j – индекс компонента смеси,

 $Y_i\,-$ массовая доля $i\-$ го компонента смеси,

 ρ – плотность,

 $\varOmega_{12}^{(1,1)*}$ - интеграл столкновений

 $\vec{J_i}$ – плотность диффузи
онного потока i-го компонента смеси ,
 N – количество компонент смеси.

- 1. Дж. Гиршфельдер, Ч. Кертисс и Р. Бедр Молекулярная теория газов и жидкостей. Издательство иностранной литературы. Москва 1961 г.
- 2. F. Moukalled, L. Mangani, M. Darwish, "The Finite Volume Method in Computational Fluid Dynamics".

3. Беляев П.Е., Макеева И.Р., Пигасов Е.Е., Мастюк Д.А. Адаптация метода Куропатенко для расчета ударных волн в эйлеровых координатах // Вестник ЮУрГУ. Серия «Математическое моделирование и программирование» (Вестник ЮУрГУ ММП). – 2021. – Т. 14, № 1. – С. 83–96

Моделирование реагирующей среды

Скорость реакции определяется по закону Аррениуса и закону действующих масс:

$$W_j = z_j T^{b_j} \exp\left(-\frac{E_{a\kappa \tau_j}}{RT}\right) \prod_{i=1}^{n_c} C_i^{\nu_{i,j}},$$

Изменение концентрации реагентов и температуры:

$$\frac{dC_k}{dt} = \sum_{j=1}^{n_r} W_j \big(\nu'_{k,j} - \nu_{k,j} \big), \quad k = 1 \dots n_c,$$

Скорость образования массы и источник энергии за счёт химических реакций:

$$\omega_k = M_k \frac{dC_k}{dt}, \qquad \qquad S_{\rm XHM} = \rho_{\rm CM} c_{V\rm CM} \frac{dT}{dt}$$

Пигасов Е.Е., Рябинин В.К., Ковалёв Ю.М. Математическое моделирование адиабатического теплового взрыва для реакции окисления водорода // Вестник ЮУрГУ, сер. Математическое моделирование и программирования. – 2013. – Том 6 - № 3.

Реконструкция значений на гранях

В данной работе для реконструкции значений на гранях используются ограничители наклона производных [1] и WENO5[2]:

$$u_{i+1/2}^{n} = u_{i} + \frac{1}{2} \Delta x_{i+1/2} \Psi(r_{i+1/2}) \frac{u_{i} - u_{i-1}}{x_{i} - x_{i-1}}$$

$$r_{i+1/2} = \frac{u_{i+1} - u_i}{u_i - u_{i-1}} \frac{x_i - x_{i-1}}{x_{i+1} - x_i}$$

$$\Psi(r) = \max[0, \min(r, 1)]$$

Диссипация на разрыве [3]

$$w = \frac{(\gamma+1)\Delta U}{4}\rho_d^n + \sqrt{\left(\frac{(\gamma+1)\Delta U}{4}\rho_d^n\right)^2 + \gamma\rho_d^n P_d^n}$$

$$P_F^* = P_u + w \Delta U.$$

1. Waterson N.P., etc. Design principles for bounded higher-order convection schemes – a unified approach / Journal of Computational Physics 224 (2007) 182–207

2. C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Math. 1697, Springer-Verlag, Berlin, 1998, pp. 325–432

3. Беляев, П.Е. Адаптация метода Куропатенко для расчета ударных волн в эйлеровых координатах/ П.Е. Беляев, И.Р. Макеева, Е.Е. Пигасов, Д.А. Мастюк // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. 2021. Т. 14. № 1. – С. 83 — 96.

3.

Результаты расчётов

Тестовые расчёты

1. Тестирование химического решателя

Сравнение с экспериментальными данными по задержке воспламенения

2. Задача Лакса-Лиски

Тестирование решения 2D задачи Римана

3. Моделирование детонационных неустойчивостей

Сравнение результатов расчёта с экспериментальными данными

Тестирование химического решателя. Постановка

Таблица 1. Экспериментальные данные

/NIITF

ROSATOM

Тестирование химического решателя. Результаты 1

Рисунок 1. Измеренные в [1,2] и рассчитанные задержки воспламенения для смесей водород-кислород-аргон

1. J. Herzler, C. Naumann / Proceedings of the Combustion Institute 32 (2009) 213–220

2. Skinner GB, Ringrose GH (1965). J Chem Phys, 42:2190-2192.

Тестирование химического решателя. Результаты 2

Рисунок 2. Измеренные в [1] и рассчитанные задержки воспламенения для смесей водород-кислород-аргон

OSATON

Тестирование химического решателя. Результаты 3

Рисунок 3. Измеренные в [1] и рассчитанные периоды индукции для смеси водородкислород-аргон при давлении 87 атмосфер

1. Petersen EL, (1996). 20th Int. Symp on Shock Waves, 941-946.

2. Alan Kéromnès et al., An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures / Combustion and Flame - V 160 - 2013 - pp. 995-1011

З.Бабушок В.И., и др. Структура предела цепочно-теплового самовоспламенения. Кинетика и катализ. Т. XXV, вып. 1, 1984.

4. Smith, G. P., et al., GRI-Mech 3.0.

N⁰	GRI, %	Ranzi, %	Bab, %	BabRev, %
1.1	35.046	20.972	30.008	25.410
1.2	1033.421	71.804	44.395	45.672
1.3	387.525	58.219	52.909	52.088
2.1	80.476	27.251	37.760	36.691
2.2	399.514	51.720	62.991	62.122
2.3	168.806	19.036	75.326	74.547
3	457.463	28.041	46.186	40.095
4.1	428.338	58.427	49.312	48.810
4.2	57.926	25.783	18.860	18.282
4.3	96.929	32.810	17.229	15.181
4.4	32.271	8.649	35.339	30.528
Min	32.271	8.649	17.229	15.181
Max	1033.421	71.804	75.326	74.547

Таблица 2. Среднее относительное отклонение рассчитанных задержек воспламенения от экспериментальных данных

17

Задача 2. Постановка

Размеры расчётной области: $l = 1 \ge 1$

Начальные условия в области представлены в Таблице 1. Граничные условия – свободное протекание.

	Левый			Правый				
	Давление	Плотность	Vx	Vy	Давление	Плотность	Vx	Vy
Верхний	0,3	0,5323	1206	0	1,5	1,5	() 0
Нижний	0,029	0,138	1,206	1,206	0,3	0,5323	() 1,206

Таблица 3. Начальные условия

Рисунок 4. Схема расчётной области

Задача 2. Результаты

А) 400х400 ячеек

Б) 1000х1000 ячеек

В) 1800х1800 ячеек

Рисунок 5. Поля плотности на момент времени t=0.5, представленные в разных сеточных разрешениях для WENO5

1. Liska R., Wendroff B. Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. (2001)

Моделирование детонационных неустойчивостей. Постановка Периодическое ГУ

Рисунок 6. Схема расчетной области

Размеры области $l = 0,2 \text{м} \ge 0,04 \text{м}$

Начальные условия:

$$X_{\text{H}_2} = 0.29, X_{\text{O}_2} = 0.21(1 - X_{\text{H}_2}), X_{\text{N}_2} = 1 - (X_{\text{H}_2} + X_{\text{O}_2}), T_0 = 500^{\circ}\text{K}, P_0 = 10^{5}\Pi\text{a}.$$

Горячая область:

$$P_{\rm I} = 4 {\rm M} {\Pi} {\rm a} \ T_{\rm I} = 3000 {\rm ^{\circ} K}$$

Моделирование детонационных неустойчивостей. Результаты 1

А) Ранзи[1]

Рисунок 7. Поля максимумов давлений для кинетических механизмов Ранзи и Бабушка

1. Alan Kéromnès et al., An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures / Combustion and Flame - V 160 - 2013 - pp. 995-1011

2.Бабушок В.И., и др. Структура предела цепочно-теплового самовоспламенения. Кинетика и катализ. Т. XXV, вып. 1, 1984.

Моделирование детонационных неустойчивостей. Результаты 2

Рисунок 8. Частота возникновения ячеек определённого размера и поле максимумов давления для механизма Бабушок [3]. Экспериментальные данные [1]

1. Dorofeev,. State-of-the Art Report by a Group of Experts. 2000

2.Alan Kéromnès et al., An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures / Combustion and Flame - V 160 – 2013 – pp. 995-1011

З.Бабушок В.И., и др. Структура предела цепочно-теплового самовоспламенения. Кинетика и катализ. Т. XXV, вып. 1, 1984.

Рисунок 9. Частота возникновения ячеек определённого размера и поле максимумов давления для механизма Ranzi [2]. Экспериментальные данные [1]

Моделирование детонационных неустойчивостей. Результаты 3

.......

$X_{H_2}, \%$	IVII	nmod	WENO5		
	E, %	dx, мкм	E, %	dx, мкм	
24.52	10,7	18	10,09	50	
29.93	11,69	18	11,03	50	
39.89	10,06	18	10,39	50	

- - -

Рисунок 10. Размер расчитанных детонационных ячеек. Экспериментальные данные [1] Таблица 4. Относительное отклонение рассчитанных размеров детонационных ячеек от экспериментальных данных

Заключение

Заключение

- Разработанный программный комплекс с использованием полного кинетического механизма позволяет оценивать характерные масштабы детонационных неустойчивостей в водород-воздушных составах
- Использование полной вычислительной кинетики имеет высокую вычислительную стоимость
- Необходимо исследовать адекватность влияния примесей (СО,СО2, Н2О) на детонационные неустойчивости
- Необходимо снизить стоимость моделирования хим. древращений (редуцированные механизмы, PINN/PECANN)

Спасибо за внимание!

Беляев Павел Евгеньевич

E-mail: belyaevpe@vniitf.ru